
Introduction to Biochemistry

CHAPTER 1

PREPARED BY WISSAM SALEH

What is biochemistry?

- Biochemistry = chemistry of life.
- Biochemists use physical and chemical principles to explain biology at the molecular level.
- Basic principles of biochemistry are common to all living organism

Biochemistry is the branch of science that seeks to describe the structure, organization, and functions of living matter in molecular terms. Recent history of biochemistry shown by the introduction of new techniques

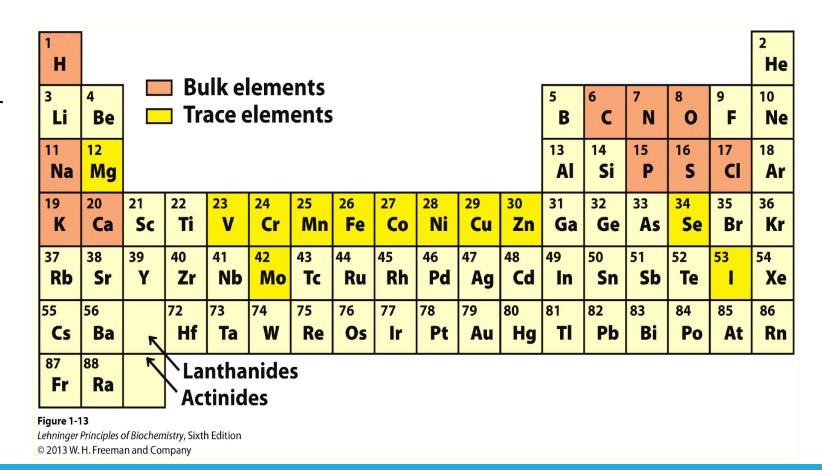
	1975	 Rapid DNA sequence determination Monoclonal antibodies Southern blotting Two-dimensional gel electrophoresis 	2015	
		Gene cloning	2010	• In vivo NMR
	1970	Restriction cleavage mapping of DNA molecules	2005	 Induced pluripotent cells Second generation DNA sequence analysis
	1965	Rapid methods for enzyme kinetics	2000	Proteomic analysis with mass spectrometry
		High-performance liquid chromatographyPolyacrylamide gel electrophoresis	2000	Gene analysis on microchips
	1960	Solution hybridization of nucleic acidsX-ray crystallographic protein structure	1995	Single-molecule dynamics
		Zone sedimentation velocity centrifugationEquilibrium gradient centrifugationLiquid scintillation counting		Targeted gene disruption
	1955		1990	Atomic force microscopy
	1000	 First determination of the amino acid sequence of a protein 		Scanning tunneling microscopy
		X-ray diffraction of DNA fibers		
	1950		1985	 Pulsed field electrophoresis Transgenic animals Amplification of DNA: polymerase chain reaction
	1945	Radioisotopic tracers used to elucidate reactions	1980	 Automated oligonucleotide synthesis Site-directed mutagenesis of cloned genes Automated micro-scale protein sequencing

Applications of Biochemistry

Medicine

Industrial applications

> Agriculture

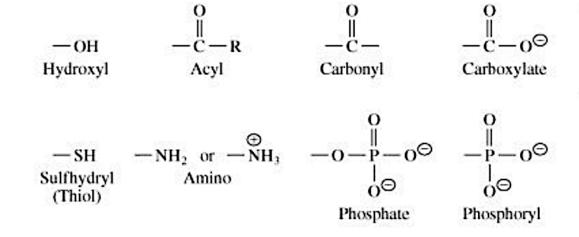

Environmental applications

Principal areas of Biochemistry

- ☐ The structural chemistry of the components of living matter and relationships of biological function to chemical structure.
- Metabolism, the totality of chemical reactions that occur in living matter.
- ☐ **Genetic biochemistry**, the chemistry of processes and substances that store and transmit biological information.

Chemical elements of life

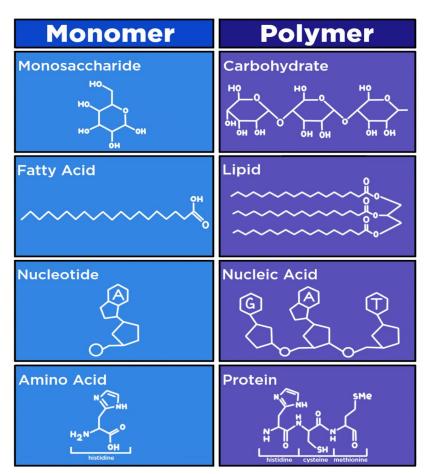
- Six nonmetallic elements:
 C, H, N, O, P, S account for
 97% of the weight of
 most organisms.
- Metal ions (e.g., K⁺, Na+, Ca⁺², Mg⁺², Zn⁺² Fe⁺² and Cl⁻) play important roles in metabolism.



(a) Organic compounds

R−ОН	O ∥ R−C−H	$ \begin{array}{c} O \\ \parallel \\ R-C-R_1 \end{array} $	о R—С—он
Alcohol	Aldehyde	Ketone	Carboxylic acid
R — SH Thiol	R — NH ₂ Primary	R ₁ R—NH Secondary	R_1 $ $ $R-N-R_2$ Tertiary
(Sulfhydryl)		Amines ²	

(c) Linkages in biochemical compounds


(b) Functional groups

¹Under most biological conditions, carboxylic acids exist as carboxylate anions:

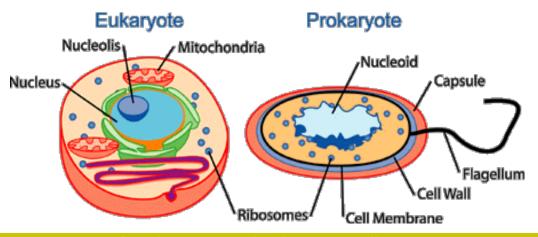
Macromolecules

- Proteins
- Polysaccharides
- Nucleic acids
- Lipids
- Many of the macromolecules are polymers, which are formed by condensation reactions of the monomers

Macromolecules

Macromolecule	Monomer	Linkage/bond
• Protein	amino acid	peptide (amide)
• Polysaccharide	monosaccharide	glycosidic (ether)
• Nucleic acids	nucleotide	phosphodiester
• Lipids (triglycerides)	fatty acids	ester

Polymers


Biological functions of macromolecules:

- Polysaccharides structure, energy storage
- Nucleic acids storage and transmission of genetic information
- Proteins structure, enzymes, hormones, receptors
- Lipids energy storage, membranes, hormones, signaling

Metabolism

- * Metabolism describes the chemical reactions in which organic compounds are synthesized and degraded, and useful energy is extracted, stored and used.
- These reactions maintain the living state of the cells and the organism.
- Metabolism can be divided into: catabolism and anabolism.

The cell is the basic unit of life

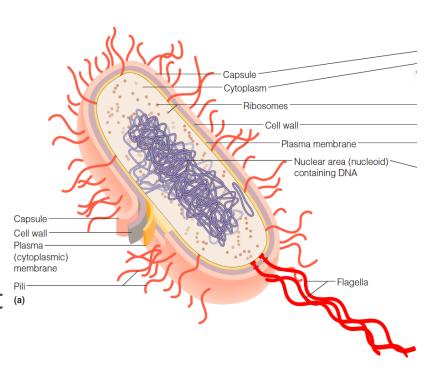
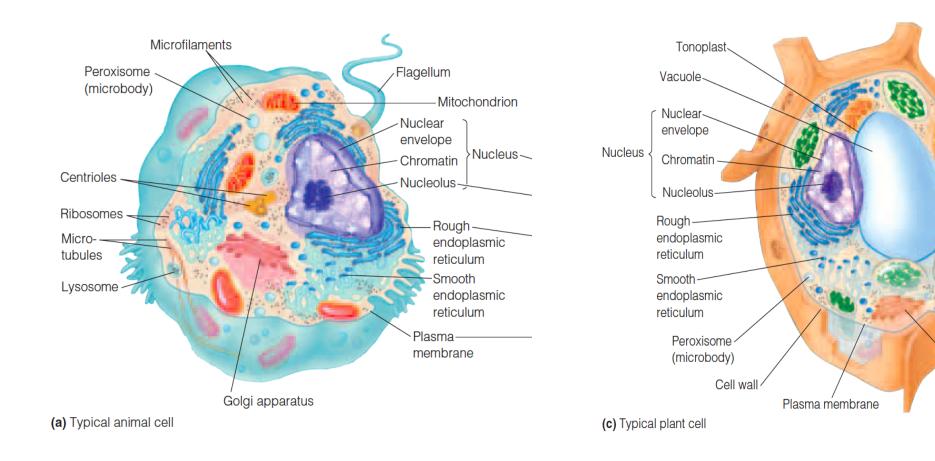


TABLE 1.2 Comparison of some properties of prokaryotic and eukaryotic cells


	Prokaryotic Cells	Eukaryotic Cells
Size	$0.2-5 \mu m$ in diameter	Most are $10-50 \mu m$ in diameter
Internal compartmentation	No	Yes, with several different kinds of organelles
Containment of DNA	Free in cytoplasm as nucleoid	In nucleus, condensed with proteins into multiple chromosomes
Ploidy ^a	Usually haploid	Almost always diploid or polyploid
Mechanism of cell replication	Simple division following DNA replication	Mitosis in somatic cells, meiosis in gametes ^b

Prokaryotes

- The prokaryotes are always **unicellular**. They include the true bacteria (<u>eubacteria</u>) and an ancient class called <u>archaea</u>.
- A plasma membrane and usually a rigid cell wall surrounds the cell.
- The cytoplasm, containing the cytosol is inside the cell.
- The **DNA** is in the form of one or more molecules that (a) exist free in the cytosol.
- The **ribosomes**, where protein synthesis occurs is free in the cytosol.

Eukaryotes

Nucleus —

- Microtubules

-Mitochondrion-

- Microfilaments

Chloroplast

► Plasmodesmata

Golgi `

apparatus

Ribosomes

Organelles

- Mitochondria specialize in oxidative metabolism
- Endoplasmic reticulum a folded membrane structure rich in Ribosomes, where much protein synthesis occurs
- Golgi complex membrane-bound chambers that function in secretion and the transport of newly synthesized proteins to their destinations
- Nucleus contains the cell's genetic information, encoded in DNA that is packaged into chromosomes.

Biochemistry is multidisciplinary!